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Abstract

A mathematical model of dynamic form of the Michaelis-Menten enzy-
matic reaction model is discussed. In this paper, we have applied Legendre
spectral algorithm for solving the time dependent Michaelis-Menten enzy-
matic reaction equations. To the best of our knowledge until there is no
rigorous Legendre wavelet solution has been reported for the above men-
tioned model. From the Legendre spectral solutions, we are then able to
analyze the efficiency of the enzymatic reaction model parameters on the
solutions to the dynamic Michaelis-Menten enzymatic reaction equations.
The numerical results demonstrate the accuracy and efficiency of the pro-
posed spectral approach. The Legendre computational matrix method
(LCMM) is shown to be a rather useful and efficient tool for constructing
analytical solutions to the dynamic Michaelis-Menten enzymatic reaction
equations. Convergence analysis of the proposed method is discussed.
Some illustrative examples are given to demonstrate the validity and ap-
plicability of the proposed method.

Keyword: Dynamic Michaelis-Menten model; Nonlinear dynamics; Enzyme
reaction; Legendre computational matrix; Homotopy analysis method; Runge-
Kutta-Felhberg method.
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1 Introduction

The dynamical form of the Michaelis-Menten model is extensively applied in
the theoretical study of enzyme kinetics reactions [17].
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Where S(t) is the concentration of a substance, E(t) is the concentration of an
enzyme, C(t) is the concentration of the resulting complex, and P(t) is the con-
centration of the resulting product. From the framework, a substrate S reacts
with an enzyme E to form a complex C which is in turn converted into a product
P and the enzyme E; the schematic is

E+S=C—FE+P

Note that

(i)k1 > 0 is the rate of reaction governing the production of the complex from
the substrate and the enzyme,

(if)k_1 > O is the rate of reaction governing decomposition of the complex to
the substrate and enzyme, and

(iil)k2 > 0 is the rate of reaction governing the breakdown of the complex into
the product and the enzyme.

Let us label the initial conditions as

5(0) =Sy, E(0)=E, C(0)=0 and P(0)=0

System of Michaelis-Menten equations arise in several physical phenomena, such
as pattern formation, chemical reaction etc. Recently, Kristina Mallory and Van
Gorder [11] established the variational approach for solving the time-dependent
differential equation. Vogt [31] used the homotopy perturbation method (HPM)
for the analytical solutions of differential equations in enzyme kinetics. Uma
Maheswari and Rajendran [30] had applied the Homotopy Perturbation method
(HPM) for the analytical solutions of non-linear reaction-diffusion equations
containing a non-linear term related to enzymatic reaction arising in mathe-
matical chemistry. Rasi et al. [23] had showed the approximate analytical ex-
pressions for the steady-state concentration of substrate and co-substrate over
amperometric biosensors for different enzyme kinetics. Sivasankari et al. [28§]
had established the Adomian decomposition method (ADM) for the steady state
reaction-diffusion equations. Manimozhi et al. [15] have introduced the He’s
variational iteration method (VIM) and homotopy perturbation method (HPM)
for solving the steady-state substrate concentration in the action of biosensor
response at mixed enzyme kinetics. Petr Kuzmic et al. [19] introduced an alge-
braic model for the kinetics of covalent enzyme inhibition at low substrate con-
centrations. Praveen et al. [20] established the theoretical analysis of intrinsic
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reaction kinetics and the behavior of immobilized enzymes system for steady-
state conditions. Seyyed Ali Madani Tonekaboni et al. [27] had established the
analytical solution of substrate concentration in the biosensor response by the
Homotopy analysis method (HAM). Kenneth Johnson [10] reviewed the histor-
ical development and logical progression of methods for quantitative analysis of
enzyme kinetics from 1913 to till date.

Abu-Reesh [1] derived the analytical solutions for the optimal design of
a number of membrane reactors in series performing enzyme catalyzed reac-
tions described by Michaelis-Meten kinetics with competitive product inhibition.
Golicnik [16] established the numerical solutions to a Michaelis-Menten model
in terms of the Lambert W(x) function. Previously, the homotopy perturbation
method has been applied to the study of enzyme reaction models [15]. Ra-
hamathunissa and Rajendran [21] had established the He’s variational iteration
method (VIM) for Michaelis-Menten kinetic of the enzymatic reactions. Also
they used the VIM for saturated catalytic kinetics and unsaturated (first order)
catalytic kinetics. Thiagarajan et al. [29] had applied the homotopy perturba-
tion method (HPM) to find the analytical solution of the steady-state catalytic
current of mediated bio-catalysis. Further, based on the outcome of their work
it is possible to compute the approximate amounts of mediator concentration
and current corresponding to a nonlinear Michaelis-Menten kinetics scheme.
Ronald Li et al. [25] used the optimal homotopy analysis method (HAM) for
the time-dependent Michaelis-Menten enzymatic reaction model. Loghambal
and Rajendran [12] had introduced the analytical expressions for steady-state
concentration of substrate and oxidized and reduced mediator in an amperomet-
ric biosensor. Recently, Anandan Anitha et al. [3] have applied the homotopy
perturbation method (HPM) to describe the behavior of amperometric biosensor
at mixed oxidate enzymatic reaction model.

Wavelets theory is a relatively new and an emerging area in the field of
applied science and engineering. It has been applied in a wide range of en-
gineering disciplines; particularly, wavelets are very successfully used in signal
analysis for waveform representation and segmentation, time-frequency analysis
and fast algorithms for easy implementation [9]. Wavelets permit the accurate
representation of a variety of functions and operators. Moreover wavelets es-
tablish a connection with fast numerical algorithms. Many researchers started
using various wavelets for analyzing problems of high computational complexity.
It is proved that wavelets are powerful tool to explore new directional in solving
differential equations and integral equations [8].

Due to the nonlinear boundary value problem (NBVPs), analytical solutions
of NBVPs are usually difficult to obtain. Consequently,different methods have
been developed to give numerical solutions for NBVPs, such as finite difference
method, Laplace transform method, Adomian decomposition method, Varia-
tional iteration method, differential transform method,operational approach etc.
Moreover, orthogonal functions also play an important role in finding numer-
ical solutions for NBVPs, such as block pulse functions, Bernstein polynomi-
als, shifted Legendre polynomials, Chebyshev wavelets, Legendre wavelets etc.
Most of the relevant references constructed some operational matrices in order
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to transform NBVPs into a series of linear or nonlinear algebraic equations.
Recently, Hariharan and Kannan [9] have reviewed the wavelet methods for the
solution of reaction-diffusion problems in science and engineering. This review
shows that the wavelet based method is an efficient and powerful in solving wide
class of linear and nonlinear reaction-diffusion equations. Some excellent refer-
ences therein. Chen and Hsiao [4] introduced the Haar wavelet method [HWM]
to lumped and distributed parameter system. Hariharan and his co-workers
[7,8] had introduced the wavelet methods to differential equations arising in sci-
ence and engineering. Recently, Hariharan [6] introduced the Legendre wavelet
based hybrid method to film-pore diffusion model. Mahalakshmi and Hariha-
ran [13] used the Chebyshev wavelet method to steady state reaction-diffusion
problems arising in mathematical chemistry. Albert Goldbeter [2] reviewed the
oscillatory enzyme reactions and Michaelis-Menten kinetics. A specific example
is discussed in this review paper and show how the Michaelis-Menten equation,
initially introduced for determining the kinetic properties of isolated enzymes,
can be applied for studying the dynamic behavior of enzyme system. Inspired
by [6],this paper aims at direct method for solving the nonlinear differential
equations by using Legendre wavelets functions and operational matrices. Leg-
endre wavelets functions have several advantages like: a)orthogonality; b)simple
form; and c)easy to use.

This paper is organized as follows. In section 2, the mathematical formu-
lation of the problem is presented. Method of solution by the Legendre com-
putational matrix method (LCMM) is presented in section 3. In section 4,
multi-resolution analysis is presented. Illustrative examples are given in section
5. Results and discussion are given in section 6. Concluding remarks are given
in section 7.

2 Background and derivation of the governing
equation

Consider the Mallory and Van Gorder [14] which inputs the system into a single
second order nonlinear ordinary differential equation. For completeness,we have

dE K

E = (klE(t)+k_1+k‘2)(EO—E(t))—klsoE(t)+k)1k2E(t) / (E(]—E(T))dT (5)
Jo

This is an equation with a derivative and an integral in the unknown function

E(t). To remove the non-locality inherent in having an integral term, we may

define

a(r) = / (o — E(r))dr (6)

Then
G (t)=FEy— E(t) and G (t)=—E () (7)



An improved method based on Legendre computational matrix method for time dependent 487

Eq.(10) of Mallory and Van Goder[14] reduces to an equation of the form

1 ,
T (Eo + So + Kin)G + kikaFBoG — k1G"? — kiko GG = k1 Sy (8)
1

where & &
K,, = —1]{74'2 (9)
1
is the Michaelis-Menten constant. Making the change of variables
T
ity =99 g (10)
k1
We have
1" ,, keEo n ko o,
9"+ (Eo+ So+ Kn)g' + =—=9—g" = 199" = EoSo (11)
1 vl

For the initial conditions, note that
0
G(0) = / (Eg — E(r))dr =0 and G'(0)=Ey— E(0)=FEy— Ey=0 (12)
0

Then g(0)=0 and g’(0)=0. Hence we shall solve the initial value problem

ko Eqg o2 @
YTV TR
g(0)=0 and ¢ (0)=0

Regarding the homotopy treatment, we should define the nonlinear operator by

g9+ (Eo+ So + Km)g' +

99" = FoSo (13)

ko E k X

S9-9% - 299 — EoSo  (14)
k1 k1
The auxiliary linear operator should be chosen so that solutions decay as T' — oo
One may recover the meaningful solution by

dg(k1t)
i)

Nlgl=g" + (Eo + So + Kn)g' +

E(t)=FEy—G'(t) = Eg — = Ey — ¢ (k1t) (15)
Note that
E(0) = Eo(¢g’(0) =0) and E(t) » Egas t oo (if ¢ = 0as T — o).

For reasonable parametric values, the function ¢’ should attain a maximal value
and then decay back to zero for large 1'- This is consistent with the numerical
results in the literature [25].

Once ¢ is found, we can recover the other quantities of interest, which can be
found by

O(t) = g (kut),
k
S(t) = 8o — g (kat) + k—jg(km,

PO = glt) (16)
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From these solutions, we have the relation

S(t) +C(t) = So + P(t)- (17)

3 Wavelets and Legendre wavelets [24]

Wavelets constitute a family of functions constructed from dilation and transla-
tion of a single function called the mother wavelet. When the dilation parameter
a and the translation parameter b vary continuously we have the following family
of continuous wavelets as [9)]

Yap(t) = a2 (?) a,beR,a#0 (18)

If we restrict the parameters a and b to discrete values as a = ag kp =
nboay k ,ag > 1,bg > 0 and n, and k positive integers, we have the following
family of discrete wavelets:

Ui (t) = lao| T (aft — nbo),

where 1, ,,(t) forms a wavelet basis for £2(R).

In particular, when ag = 2 and by = 1, then 1, ,,(¢) forms an orthonormal basis
[9].

Legendre wavelets iy, m (t) = ¢ (k, 7, m, t) have four arguments; 7 = 2n — 1,
n=1,2,3,...,2" 1 k can assume any positive integer, m is the order for Leg-
endre polynomials and ¢ is the normalized time. They are defined in the interval
[0,1] as

k . . . .
Yn m(t) = { \/@22 Rn(2kt - n)v for nzkl <t< n;’:“l (19)

0, for otherwise

where m = 0,1,....,M — 1,n = 1,2,...,2F"1. In Eq.(19), the coefficient
m + % is for orthonormality, the dilation parameter is ¢ = 27* and translation

parameter is b = n2~*. Here, P,,(t) are the well-known Legendre polynomials
of order m which are orthogonal with respect to the weight function w(t) = 1
on the interval [—1, 1], and satisfy the following recursive formula:

Pot) = 1, Pi(t) = ¢,
Prsi(t) = <2m+1) 1P (t) — < m )Pm_l(t), m=1,23,...

m—+1 m+1

3.1 Function approximation [24]
A function f(t) defined over [0,1) may be expanded as

f(t) = Z Z Cn,mwn,m(t), (20)

n=1m=0
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where ¢, = (f(t), ¥n,m(t)) in which (,) denotes the inner product.
If the infinite series in Eq.(20) is truncated, then Eq.(20) can be written as

2k=1 A1
f(t) = Z Z Cn,mwn,m(t) = CT‘IJ(t)7 (21)

n=1 m=0

where C and U(t) are 2°~1M x 1 matrices given by

T
C= [610, Cily-+-5sC1M—1,€20,---,C2M —1,-+-,C2k=10, .-, CZkflM—l]

U(t) = [Wiot), Y11 (t), .., 1m—1(t), Y20(t), ..., han—1(t),. ..,
Yor-19(t), ... or-rpr 1 ()]T (22)

The integration of the vector ¥(t) defined in Eq.(22) can be obtained as

/ Cwd = Pue), (23)
0

where P is the (2°=1M) x (2F=1M) operational matrix for integration and is
given in [24] as

L F F ... F

) O L F ... F
P=xl: o ; (24)

2

O O ... O L

In Eq.(24) F and L are M x M matrices given by

2 0 0
0 0 0
F: . I
0 0 0
and
r 1
IE/_ 7 \9_ 0 0 0
3 3
-5 0 g 0 0 0
V5 V5
0 -3 0 % 0 0
— V7
L 0 0 —7E 0 0 0
M3
0 0 0 T (2M-3)V2M-5 0
VaM 1
0 0 0 0o .. 0 — G AT

o o o O

(2M —3)v2M -1

0
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The integration of the product of two Legendre wavelet function vectors is ob-
tained as

— ! T 5
1_/0 O (U7 (¢)dt (25)

where [ is an identity matrix.

3.2 Operational matrix of derivative and product opera-
tion matrix

In the following section, we introduce a new Legendre wavelets operational ma-
trix of derivative.

Theorem 2. Let ¢(t) be the Legendre wavelets vector defined in Eq.(22)

The derivative of the vector v (¢) can be expressed by

dy(t)

——= =Dy(t 26
A0~ by (26)
where D is the 2¥(M + 1) operational matrix of derivative defined as follows
F 0 ... 0
0 F ... 0
D=1| . . . s
0 0 ... F
in which F is (M + 1) x (M + 1) matrix and its (r,s)th element is defined as
follows.
. 26 /2r —1)(2s—1) r=2,.,(M+1),s=1,...,r—1 for (r+ s)odd,
l47‘78 = .
0, for otherwise

(27)

Proof: See Ref.[18]
Corollary. By using Eq.(26) the operational matrix for nth derivative can be
derived as

d™p(t)

dx™

= D"(t) (28)

Where D™ is the nth power of matrix D.

4 Applications of the operational matrix of deriva-
tive
4.1 Linear differential equation

Consider the linear second order differential equation

y" (@) + fil@)y' (2) + fa(a)y(x) = g(x) (29)
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with the initial conditions
y(0)=A, ¢ (0)=B, (30)

or boundary conditions
y(0)=A, ¢'(1)=B. (31)

To solve problem (29) we approximate y(z), f1(x), f2(z) and g(x) by the Leg-
endre wavelets as

y(x) = CTy (),
fi(z) = Ffp(x)
Jalx) = F3 (),
g9(z) = GTy() (32)
By using Eq.(28) and (32) we have
Y (x) = CTDY(z), y'(x) = CTD*(x) (33)

Employing Eq.(32) and (33), the residual R(x) for Eq.(29) can be written as
R(z) = (CTD*Y(x) + Flp(@)v” () DT C + Fy §(2)y" (2)C — GTi(x)) (34)
By using the product operation matrix of Legendre wavelets, we have
R(z) = @7 (@)(D*)TC+ ¢ (@) ADTC + 47 (2) [2C — 7 (2)G).  (35)

As in a typical Tau method, we generate 2F(AM + 1) — 2 linear equations by
applying

/01 U(z)R(x)dzr =0 j=1,....... (M +1) -2 (36)
Also, by substituting the initial conditions (30) in Eq.(32)-(33) we have
y(0) = CTp(0) = 4,
y'(0) = CT Dy(0) = B. (37)
Or for boundary value problems we have
y(0) = CTw(0) = A,y(1) = CTy(1) = B (38)

Eq.(36)-(38) generate 2% (M + 1) set of linear equations. These linear equations
can be solved for unknown coefficients of the vector C. Consequently, y(x) given
in Eq.(32) can be calculated.



492

M. S. M. Selvi and G. Hariharan

5 Multi-resolution analysis (MRA)

The best way to understand the wavelets is through a multi-resolution analysis.
Given a function f € £2(R) a multi-resolution analysis (MRA) of £2(R) pro-
duces a sequence of subspaces V;, Vj11,... such that the projections of f onto
these spaces give finer and finer approximations of the function f as j — oc.

5.1 Definition 1.(Multi-resolution analysis)

A multi-resolution analysis of EQ(]R) is defined as a sequence of closed subspaces
V; € L2(R), j € Z with the following properties

e ...CViCcVyCcWVicC...

e The space V; satisfy ;o5 Vj is dense in L2(R) and Njez Vi =0

If f(z) € Vo, f(27x) € Vj, i.e. the spaces V; are scaled versions of the
central space Vy

If f(z) € Vo, f(272—k) € V, i.e. all the V; are invariant under translation

There exists ® € Vj such that ®(z — k); k € Z is a Riesz basis in V}

6 Convergence analysis

6.1 Theorem 1

The series solution y(z) = > 0o | > ¢nm¥n,m(z), defined in Eq.(20) using
Legendre wavelet method converges to y(z).
Proof. See Ref.[26]

7 Illustrative examples

7.1 Example

Consider the nonlinear initial value problem

ko Fo k
20— g — 294’ = EoSo (39)
T ko

9"+ (Eo+ So+ Km)g' +
with the following initial conditions ¢g(0) = 0 and ¢’(0) =0

The suggested method is applied with M=2, and the solution g(t) is approxi-
mated as follows
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We solve the Eq.(40) using the algorithm described in Properties of Legendre
Wavelets section for the case corresponds to M=2, k=0 to obtain an approxi-
mate solution of u(x). First, if we make use of Eq.(41), then the two operational
matrices D and D? are given by

0 0 0
D=|2 0 0],
| 0 6 0
[0 0 0
D=0 0 0],
| 12 0 0
1
2
U(t)=4/= 2 —1 ,
Tl 6t2—6t+1
ct = g[co c1 cg]

For M=2, a system of three nonlinear algebraic equations is obtained, two
of them from the initial conditions and the other from the main equation using
the collocation point x=0.5;

Case(i) Consider k 1=k =ky=1and Ep=Sy=1

g +gdA-9)—g*+g-1=0 (41)
CTD*(t) + CTDy(t)[4 — CT(t)] — [CTDY()]? + CT(t) =1 =0
which is equivalent to
12¢5 + 8¢1 — 2coc1 + 1o —4e1? +cg —0.5c — 1 =0 (42)

Furthermore, the use of initial conditions in Eq.(40) lead to the two equation,

g(0) =0= ¢y = 2¢o (43)
g (0)=0=c; =3c2 (44)

The solution of the nonlinear system of equations Eq.(41)-(44) give
cop = 0.0552, ¢; =0.0828, ¢y =0.0276
Consequently,

1
g(t)=( 0.0552 0.0828 0.0276 ) 2t —1
6t2 — 6t + 1

g(t) = 0.165612 (45)

493
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Figure 1: Computation of g(t) for various t values

Case(ii) Consider k_; =0.5,k; =1,ko=05and Fy=S5y=1
g +g(3-05g9)—g*+059—-1=0 (46)
CTD*y(t) + CTDy(t)[3 — 0.5CTy(t)] — [CT D (t)]? +0.5CTy(t) —1=0
which is equivalent to
12¢5 + 6¢1 — cocr + 0.5¢1¢0 — 4e1? +0.5¢9 — 0.25¢ — 1 =0 (47)
Furthermore, the use of initial conditions in Eq.(47) lead to the two equation,

g(0) =0= co = 2¢y (48)
¢'(0) =0 = c¢; = 3co (49)

The solution of the nonlinear system of equations Eq.(47)-(49) give
co =0.068, ¢ =0.102, cp =0.0340
Consequently,

1
g(t) = ( 0.068 0.102 0.034 ) 2t — 1
612 — 6t + 1

g(t) = 0.204¢> (50)
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Figure 2: Computation of g(t) for various t values

Case(iii) Consider k_; =1,k1 =1,ko=05and Fy=S5y=1

¢ +g(35-059)+¢?+059-1=0 (51)
CTD*)(t) + CTDy(t)[3.5 — 0.5CT(t)] + [CT Dy (t)]? +0.5CT¢(t) — 1 =0
which is equivalent to
12¢o + 7ey + 0.5¢g — 0.25¢5 + 4e1? — coer +0.5¢ac1 — 1 =0 (52)
Furthermore, the use of initial conditions in Eq.(51) lead to the two equation,

g(0) =0= cp = 2¢ (53)
g'(0)=0=c; =3c (54)

The solution of the nonlinear system of equations Eq.(52)-(54) gives
co =0.0578, ¢; =0.0867, c2 =0.0289
Consequently,

1
g(t) = ( 0.0578 0.0867 0.0289 ) 2% — 1
6t2 — 6t + 1

g(t) = 0.173412 (55)



496 M. S. M. Selvi and G. Hariharan

Figure 3: Computation of g(t) for various t values

Case(iv) Consider k1 =05,k =1=ky=1and Ey=Sy=1
g +9dB5-9) —¢d*+g—1=0 (56)
CTD*y(t) + CTDY()[3.5 — CT(1)] = [CT Dy (1)]* + CTy(t) =1 =0
which is equivalent to
12¢5 + Te1 4 co — 0502 + 4c12 — 2c9c1 — cac1 — 1 =0 (57)
Furthermore, the use of initial conditions in Eq.(56) lead to the two equation,

9(0) =0 = cp = 2cp (58)
g(0)=0=c1 =3¢ (59)

The solution of the nonlinear system of equations Eq.(57)-(59) gives
co = 0.057, ¢ =0.0855, cp=0.0285
Consequently,

1
g(t)=( 0.057 0.0855 0.0285 ) 2t — 1
6t2 — 6t + 1

g(t) = 0.171#? (60)
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Figure 4: Computation of g(t) for various t values

Case(v) Consider k_1 =k; =05,ks =1and Ey = Sy =1
g +d(B—-29)—g*+29-1=0 (61)
CTDX(t) + CTDY()[5 — 2¢T ()] — [CT Dy (1)]? +2¢Ty(t) —1=0
which is equivalent to
12¢9 + 10¢; + 2¢9 — ¢a — 4¢1% — 4deger + 2ca¢1 — 1 =0 (62)
Furthermore, the use of initial conditions in Eq.(61) lead to the two equation,

g(0) =0 = ¢p = 2co (63)
g'(0)=0=c1=3c (64)

The solution of the nonlinear system of equations Eq.(62)-(64) gives
co = 0.0456, ¢ =0.0684, co=0.0228
Consequently,

1
g(t) = ( 0.0456 0.0684 0.0228 ) 2 — 1
612 — 6t + 1

g(t) = 0.1368t> (65)
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Figure 5: Computation of g(t) for various t values

Case(vi) Considerk_; =1,k; =0.5,ks=1and Fy =Sy =1
g+ (6-29)—g*+29-1=0 (66)

CTD*y(t) + CTDY(t)[6 — 2CTy(1)] — [CT Dy (t)]? +2CT4(t) —1 =0

which is equivalent to
12¢5 4+ 12¢1 + 2¢9 — ¢o — 4012 —4eger +2c0c1 —1=0 (67)
Furthermore, the use of initial conditions in Eq.(66) lead to the two equation,

9(0) =0 = co = 2c2 (68)
g'(0)=0=c1 =3¢ (69)

The solution of the nonlinear system of equations Eq.(67)-(69) gives
cp = 0.0400, ¢; =0.0600, ¢ = 0.0200
Consequently,
1
g(t) = ( 0.0400 0.0600 0.0200 ) 2t—1
61> — 6t + 1

g(t) = 0.12¢? (70)
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Figure 6: Computation of g(t) for various t values

Case(vii) Consider k_; =1,k1 = k2 =0.5and Ey =5y =1
J+gG-9)—g*+g-1=0 (71)
CTD)(t) + CTDY(H)[5 — CTo(1)] = [CTDY(1)]* + CTo(H) —1 =0
which is equivalent to
12¢p + 10¢1 + ¢ — 0.5¢2 — 4e1? — 2cpc1 + cac1 —1 =0 (72)
Furthermore, the use of initial conditions in Eq.(71) lead to the two equation,

g(0) = 0= o = 2¢ (73)
g (0)=0=c; = 3c2 (74)

The solution of the nonlinear system of equations Eq.(72)-(74) gives
co = 0.0472, ¢ =0.0708, ¢ =0.0236
Consequently,

1
g(t)=( 0.0472 0.0708 0.0236 ) 2t —1
62 — 6t +1

g(t) = 0.1416t2 (75)
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Figure 7: Computation of g(t) for various t values

In figures [1-7] show the legendre wavelet solution for various values of Fy
and Sp. Our results can be compared with Runge-Kutta-Felhberg 4-5 method
(denoted RKF45, see[5]) and homotopy analysis method(HAM).In Legendre
wavelet method, increasing the value of M we get the results closure to the real
values.

8 Conclusion

The dynamical form of the time-dependent Michaelis-Menten enzymatic reac-
tion equation is discussed. From the operational matrix based results shown
here, we investigate that the resulting solutions have rather low residual er-
rors after few iterations are calculated, highlighting the accuracy and efficiency
of the proposed method. Unlike other methods applied to solve the dynamic
Michaelis-Menten kinetic model, the spectral method allows one to control the
error inherent in the approximating solutions to the above model.
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